友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
生命是什么?-第3部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
当悬挂的物体愈明显地感受到周围分子的热运动的冲击,而在它的平衡位置附近开始进行象第二个例子中的微滴的颤动那样一种不停的、不规则的“舞蹈”时,就达到了极限。虽然这种动作并没有给天平的测量准确性设置绝对极限,但它却建立了一个实际上的极限。热运动的不可控制的效应同被测量的力的效应相竞争,从而使这个观察到的单个的偏差变得无意义了。为了消除你的仪器的布朗运动的影响,你必须作多次的观察。我想,在我们目前的研究中,这个例子是特别有启发的。因为我们的感觉器官毕竟是一种仪器。如果它变得太灵敏,我们将看到它将是多么的无用。
10。 根号n律
暂且举这么多例子吧。我只想再补充一点,那些同有机体内部有关的,或同有机体与环境相互作用有关的物理学或化学定律,没有有关是不能被我们选作例子的。详细的解释也许要更复杂些,但要点总还是一样的因此再举这些例子就会变得千篇一律了。
但是,关于任何一个物理学定律都会有的不准确性,我想补充一点非常重要的、定量的说明。即所谓的根号n律。我先用一个简单例子来说明,然后再进行概括。
如果我告诉你,某一种气体在一定的压力和温度下具有一定的密度,以及如果我换一种说法,即在这些条件下,在一定的体积内(体积大小适于实验需要)正好有n个气体分子,那么你可以确信,如果你能在某一瞬间检验我的说法,你将会发现它是不准确的,偏差将是根号n这一级。因此,如果数目n=100,你将发现偏差大约是10,于是相对误差=10%。可是,如果n=1000000,你多半会发现偏差大约是1000,相对误差=0。1%。粗略地说,这个统计学定律是很普遍的。物理学和物理化学定律的不准确性在根号n分之一这一可能的相对误差之内,那里的n是进行合作以引起该定律——对某些想法或某种具体实验来说,在有重要关系的空间或时间(或两者)的范围内,使该定律产生它的作用——的分子数目。
由此,你们又一次看到了,一个有机体为了使它的内部生命和它同外部世界的相互作用,都能分享到很精确的定律的好处,它就必须有一个相当巨大的结构。不然的话,进行合作的粒子数将是太少了,“定律”也就太不准确了。特别迫切需要的是平方根。因为尽管一百万是一个相当大的数目,可是如果精确性只有千分之一,那么,对一个要宣称自己具有“自然界定律”的尊严的事物来说,并不是太好的。
第二章 遗传机制
存在是永恒的;因为有许多法制保存了生命的宝藏;而宇宙从这些宝藏中汲取了美。——歌德
11。 古典物理学家的设想决不是无关紧要的,而且是错误的
于是,我们得到的结论是,一个有机体和它经历的全部生物学的有关过程,必须具有极其多的“多原子”结构,必须防止偶然的“单原子”事件起到太重大的作用。“朴素物理学家”告诉我们那是必要的,所以有机体可以具有足够精确的物理学定律,并依这些定律建立它的很有规律和很有秩序的功能。从生物学来说,这些先验地得出的(就是说,从纯粹的物理学观点得出的“结论,如何去符合实际的生物学事实呢?
乍看起来,人们往往认为这个结论是无关紧要的。比如说,三十年前的生物学家也许已经讲过这一点了,可是,对于强调统计物理学对有机体的重要性不亚于其他方面的通俗讲演者来说,这个结论还是十分合适的,但实际上这也不过是人所共知的道路而已。因为任何高等生物的成年个体不仅是它的躯体,而且是组成躯体的每一个单细胞都包含着”天文数字“的各种单原子。我们观察的每一个具体的生理过程,不论在细胞内或在细胞同周围环境的相互作用中,看来是——或者三十年前已经认为是——包含了这么多的单原子和单原子过程,这就保证了物理学和物理化学有关定律的有效性,即使按照统计物理学关于”大量数目”的严格要求,也能保证定律的有效性;这种严格要求就是我刚才用根号n律所说明的。
如今,我们知道这个意见是错误的。正如我们即将明白的,有许多小得不可思议的原子团,小到不足以显示精确的统计学定律,可是在生命有机体内,它们对极有秩序和极有规律的事件确实起着支配作用。它们控制着有机体功能的重要特征;在所有这些情况下,显示了十分确定而严格的生物学定律。
我必须开始概要地讲一下生物学,特别是遗传学的情况;换句话说,我必须简要地说明这门科学的现状,可是我对这门科学不是内行。但我不得不这么做,很抱歉,特别是对任何一位生物学家来说,我讲的是外行话。另一方面,请允许我多少带点教条式地向你们介绍流行的观点。不能指望一个蹩脚的理论物理学家能对实验材料作出任何象样而全面的评述,这些实验材料,一方面来自大量的、长期积累的、无比机智的繁育试验;另一方面,来自最精密的现代显微镜技术对活细胞的直接观察。
12。 遗传的密码正本(染色体)
让我在生物学家称之为“四维模式”的意义上使用有机体的“模式”这个词,它不仅是指成年有机体的、或任何其他发育阶段上的有机体的结构和功能,而且是指有机体开始繁殖自身时,从受精卵到成年阶段的个体发育的全过程。整个四维模式已知是由受精卵的结构决定的。此外,我们知道,主要是由受精卵的很小一部分结构,即它的细胞核决定的。这个细胞核在细胞的正常“休止期”内,往往表现为网状染色质,分散在细胞内。但在极其重要的细胞分裂(有丝分裂和减数分裂,见下文)过程中,可以观察到由一组颗粒构成的、常常呈纤维状或棒状的叫做染色体的东西,它的数目是8个或12个,人是48个。但是,我应该把数字写成2×4,2×6……2×24……,并且按照生物学家习惯意义上的用词,我应该称之为两套染色体。单个染色体,有时虽然可以从它的形状和大小,清楚地加以区分和单个地加以辨认,但是,两套染色体几乎是一模一样的。我们马上就会明白,一套来自母体(卵细胞),一套来自父体(精子)。这些染色体也许只不过是我们在显微镜下看到的、被当作是染色体的一种轴状骨架纤丝,它把个体未来发育的全部模式,和个体在成年时的机能的全部模式都包含在一种密码正本里。每一整套染色体都含有全部密码;因此,一般说来,作为未来个体的最初阶段的受精卵里有着密码的两个副本。
我们把染色体纤丝的结构称为密码正本时,我们的意思是说,拉普拉斯曾经陈述过一种直接揭示每一个因果关系的、洞察一切的思想,根据卵的结构就能告诉你在适宜的条件下,这个卵将发育成一只黑公鸡还是一只芦花母鸡,是长成一只苍蝇还是一棵玉米,一株石南,一只甲虫,一只老鼠或是一个女女人。我们还可以再补充一点,那就是卵细胞的外观是非常相似的;即使外观不相似,比如鸟类和爬虫类的卵就比较大,可是在与密码有关的结构上的差别并没有象营养物质的差别那么大。在这些卵中,营养物质是由于不言而喻的原因而增多的。
当然,“密码正本”这个名词太狭隘了。因为染色体结构同时也是促使卵细胞未来发育的工具。它是法典与行政权力的统一,或者用另一个比喻来说,是建筑师的设计同建筑工人的技艺的统一。
13。 身体通过细胞分裂(有丝分裂)而生长
在个体发育中,染色体是怎样行动的呢?
一个有机体的生长是由连续的细胞分裂所引起的。这样的细胞分裂叫做有丝分裂。考虑到我们的身体是由无数个细胞组成的,所以,在一个细胞的生命中,有丝分裂并不象人们所想的那样一种十分经常的事件。开始时生长是很快的。卵细胞分成两个子细胞,下一步发育成四个细胞,然后是8,16,32,64……等等。正在生长的身体的各个部分中,分裂频率并不是完全相同的,那样就会打破这些细胞数目的规则性。我们通过简单的计算便可推断出。平均只要50或60次连续的分裂,便足以产生出一个成人的细胞数,或者是这个细胞数的十倍,那就是把一生中细胞的更替也考虑在内了。因此,我的一个体细胞,平均来说,只是变成我的那个卵细胞的第五十代或第六十代的“后代”。
14。 在有丝分裂中每个染色体是被复制的
在有丝分裂中每个染色体是怎样行动的呢?它们是被复制了,两套染色体和密码的两个副本都是被复制了。这个过程在显微镜下已作了详尽的研究,并且是极其有趣的,可是它涉及的面太广,在这里不能一一细说了。突出的一点是:两个“子细胞”中的每一个都得到了跟亲细胞完全相似的、更完全的两套染色体的嫁妆。就染色体的宝库来说,所有的体细胞都是完全一样的。
我们对这种机构虽然了解得很少,但我们不能不认为,它一定是通过某种途径同有机体的机能密切相关的,因为每个单细胞,甚至是不太重要的单细胞,都具有密码正本的全套(两份)副本。不久以前,我们在报上看到蒙哥马利将军在非洲战役中,要他麾下的每一个士兵都仔细了解他的全部作战计划。如果确是那样的话(考虑到他的部队有高度的才能和可以充分信赖,看来这可能是真实的),它为我的例子提供了一个绝妙的类比,在这个类比中,相应的事实都是完全真实的。最令人惊异的是在整个有丝分裂中,始终保持着两套染色体。这是人们揭示的最令人惊奇的遗传机制的明显特点,只有在我们接下去要讨论的那种情况中,才偏离了这种规律。
15。 减数分裂和受精(配子配合)
就在个体开始发育以后,有一团细胞保留着,以便在发育后期产生出成年个体繁殖所需的所谓配子,至于是精细胞或卵细胞,这要根据情况而定。“保留”的意思是指它们在这段时期内不用于其他目的,以及进行很少几次有丝分裂。例外的或减数的分裂(称为减数分裂),是这样一种分裂,就是在成年阶段,这些保留的细胞通过减数分裂最后产生了配子,一般只是在配子配合发生以前的很短时间内才有这种分裂。在减数分裂中,亲细胞的两套染色体简单地分成二组,其中一组染色体进入二个子细胞中的一个,就是进入了配子。换句话说,减数分裂并不象有丝分裂那样地发生染色体数目的加倍而使染色体数目保持不变,因此每个配子收到的只有一半,就是说,只有密码的一个完整的副本而不是两个,例如人只有24个,而不是2×24=48个。
只有一个染色体组的细胞叫做单倍体(来自希腊文,单一)。因此,配子是单倍体,通常的体细胞是二倍体(来自希腊文,双份)。有三组、四组染色体,……或通常所说的在体细胞里有时有许多染色体组的个体,就称之为三倍体、四倍体……多倍体。
在配子配合中雄配子(精子)和雌配子(卵)都是单倍体,结合形成的受精卵,是二倍体。它的染色体组,一个来自母体,一个来自父体。
16。 单倍体个体
还有一点需要加以纠正。这一点对于我们的研究目的来说,虽然不是必不可少的,但却是很有意思的,因为它表明,每一套染色体组包含了“模式”的确实是相当齐全的密码正本。
也有一些例子说明减数分裂后并不立即受精的,单倍体细胞(“配子”)经历了多次有丝分裂,结果产生了全是单倍体的个体。雄蜂是没有父亲的!它所有的体细胞都是单倍体。如果你愿意的话,你可以叫它是一个大大扩大了的精子;事实上,也正如大家所知道的,起这样的作用正是雄蜂一生中的唯一任务。可是,这也许是一种荒谬的观点。因为这种情况并不是独一无二的。好多种植物,通过减数分裂产生单倍体配子,或称之为孢子,孢子落在地上就象一粒种子,发育成真正的单倍体植物,它的大小可以同二倍体相比拟。苔藓植物长有叶片的底部是单倍体植物,叫配子体,因为在它的顶端发育了性器官和配子,配子通过相互受精按通常的方式产生了二倍体植物,在裸露的茎的顶部生有孢子囊。通过减数分裂,在顶端的孢子囊中产生孢子,所以这个二倍
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!