友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
上帝掷骰子吗-第49部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
Ghirardi等人把薛定谔方程换成了所谓的密度矩阵方程,然后做了复杂的计算,看看这样的自发定域过程会对整个系统造成什么样的影响。他们发现,因为整个系统中的粒子实际上都是互相纠缠在一起的,少数几个粒子的自发定域会非常迅速地影响到整个体系,就像推倒了一块骨牌然后造成了大规模的多米诺效应。最后的结果是,整个宏观系统会在极短的时间里完成一次整体上的自发定域。如果一个粒子平均要花上10亿年时间,那么对于一个含有1摩尔粒子的系统来说(数量级在10^23个),它只要0。1微秒就会发生定域,使得自己的位置从弥漫开来变成精确地出现在某个地点。这里面既不要“观测者”,也不牵涉到“意识”,它只是基于随机过程!
如果真的是这样,那么当决定薛定谔猫的生死的那一刻来临时,它的确经历了死/活的叠加!只不过这种叠加只维持了非常短,非常短的时间,然后马上“自发地”精确化,变成了日常意义上的,单纯的非死即活。因为时间很短,我们没法感觉到这一叠加过程!这听上去的确不错,我们有了一个统一的理论,可以一视同仁地解释微观上的量子叠加和宏观上物体的不可叠加性。
但是,GRW自身也仍然面临着严重的困难,这条大道并不是那样顺畅的。他们的论文发表当年,海德堡大学的E。Joos就向《物理评论》递交了关于这个理论的评论,而这个评论也在次年发表,对GRW提出了置疑。自那时起,对GRW的疑问声一直很大,虽然有的人非常喜欢它,但是从未在物理学家中变成主流。怀疑的理由有许多是相当技术化的,对于我们史话的读者,我只想在最肤浅的层次上稍微提一些。
GRW的计算是完全基于随机过程的,而并不引入类如“观测使得波函数坍缩”之类的假设。他们在这里所假设的“自发”过程,虽然其概念和“坍缩”类似,实际上是指一个粒子的位置从一个非常不精确的分布变成一个比较精确的分布,而不是完全确定的位置!换句话说,不管坍缩前还是坍缩后,粒子的位置始终是一种不确定的分布,必须为统计曲线(高斯钟形曲线)所描述。所谓坍缩,只不过是它从一个非常矮平的曲线变成一个非常尖锐的曲线罢了。在哥本哈根解释中,只要一观测,系统的位置就从不确定变成完全确定了,而GRW虽然不需要“观测者”,但在它的框架里面没有什么东西是实际上确定的,只有“非常精确”,“比较精确”,“非常不精确”之类的区别。比如说当我盯着你看的时候,你并没有一个完全确定的位置,虽然组成你的大部分物质(粒子)都聚集在你所站的那个地方,但真正描述你的还是一个钟形线(虽然是非常尖锐的钟形线)!我只能说,“绝大部分的你”在你所站的那个地方,而组成你的另外的那“一小撮”(虽然是极少极少的一小撮)却仍然弥漫在空间中,充斥着整个屋子,甚至一直延伸到宇宙的尽头!
也就是说,在任何时候,“你”都填满了整个宇宙,只不过“大部分”的你聚集在某个地方而已。作为一个宏观物体的好处是,明显的量子叠加可以在很短的时间内完成自发定域,但这只是意味着大多数粒子聚集到了某个地方,总有一小部分的粒子仍然留在无穷的空间中。单纯地从逻辑上讲,这也没什么不妥,谁知道你是不是真有小到无可觉察的一部分弥漫在空间中呢?但这毕竟违反了常识!如果必定要违反常识,那我们干脆承认猫又死又活,似乎也不见得糟糕多少。
GRW还抛弃了能量守恒(当然,按照相对论,其实是质能守恒)。自发的坍缩使得这样的守恒实际上不成立,但破坏是那样微小,所需等待的时间是那样漫长,使得人们根本不注意到它。抛弃能量守恒在许多人看来是无法容忍的行为。我们还记得,当年玻尔的BKS理论遭到了爱因斯坦和泡利多么严厉的抨击。
还有,如果自发坍缩的时间是和组成系统的粒子数量成反比的,也就是说组成一个系统的粒子越少,其位置精确化所要求的平均时间越长,那么当我们描述一些非常小的探测装置时,这个理论的预测似乎就不太妙了。比如要探测一个光子的位置,我们不必动用庞大而复杂的仪器,而可以用非常简单的感光剂来做到。如果好好安排,我们完全可以只用到数十亿个粒子(主要是银离子)来完成这个任务。按照哥本哈根,这无疑也是一次“观测”,可以立刻使光子的波函数坍缩而得到一个确定的位置,但如果用GRW的方法来计算,这样小的一个系统必须等上平均差不多一年才会产生一次“自发”的定域。
Roland Omnes后来提到,Ghirardi在私人的谈话中承认了这一困难。但他争辩说,就算在光子使银离子感光这一过程中牵涉到的粒子数目不足以使系统足够快地完成自发定域,我们谁都无法意识到这一点!如果作为观测者的我们不去观测这个实验的结果,谁知道呢,说不定光子真的需要等上一年来得到精确的位置。可是一旦我们去观察实验结果,这就把我们自己的大脑也牵涉进整个系统中来了。关键是,我们的大脑足够“大”(有没有意识倒不重要),足够大的物体便使得光子迅速地得到了一个相对精确的定位!
推而广之,因为我们长着一个大脑袋,所以不管我们看什么,都不会出现位置模糊的量子现象。要是我们拿复杂的仪器去测量,那么当然,测量的时候对象就马上变得精确了。即使仪器非常简单细小,测量以后对象仍有可能保持在模糊状态,它也会在我们观测结果时因为拥有众多粒子的“大脑”的介入而迅速定域。我们是注定无法直接感觉到任何量子效应了,不知道一个足够小的病毒能否争取到足够长的时间来感觉到“光子又在这里又在那里”的奇妙景象(如果它能够感觉的话!)?
最后,薛定谔方程是线性的,而GRW用密度矩阵方程将它取而代之以后,实际上把整个理论体系变成了非线性的!这实际上会使它作出一些和标准量子论不同的预言,而它们可以用实验来检验(只要我们的技术手段更加精确一些)!可是,标准量子论在实践中是如此成功,它的辉煌是如此灿烂,以致任何想和它在实践上比高低的企图都显得前途不太美妙。我们已经目睹了定域隐变量理论的惨死,不知GRW能否有更好的运气?另一位量子论专家,因斯布鲁克大学的Zeilinger(提出GHZ检验的那个)在2000年为Nature杂志撰写的庆祝量子论诞生100周年的文章中大胆地预测,将来的实验会进一步证实标准量子论的预言,把非线性的理论排除出去,就像当年排除掉定域隐变量理论一样。
OK,我们将来再来为GRW的终极命运而担心,我们现在只是关心它的生存现状。GRW保留了类似“坍缩”的概念,试图在此基础上解释微观到宏观的转换。从技术上讲它是成功的,避免了“观测者”的出现,但它没有解决坍缩理论的基本难题,也就是坍缩本身是什么样的机制?再加上我们已经提到的种种困难,使得它并没有吸引到大部分的物理学家来支持它。不过,GRW不太流行的另一个重要原因,恐怕是很快就出现了另一种解释,可以做到GRW所能做到的一切。虽然同样稀奇古怪,但它却不具备GRW的基本缺点。这就是我们马上就要去观光的另一条道路:退相干历史(Decoherent Histories)。这也是我们的漫长旅途中所重点考察的最后一条道路了。
上载图片:
第十章 不等式
一
在多世界奇境中的这趟旅行可能会让大家困惑不解,但就像爱丽丝在镜中读到的那首晦涩的长诗Jabberwocky,它无疑应该给人留下深刻的印象。的确,想象我们自身随着时间的流逝不停地分裂成多个世界里的投影,而这些分身以几何数目增长,以至无穷。这样一幅奇妙的景象实在给这个我们生活其中的宇宙增添了几分哭笑不得的意味。也许有人会觉得,这样一个模型,实在看不出有比“意识”更加可爱的地方,埃弗莱特,还有那些拥护多世界的科学家们,究竟看中了它哪一点呢?
不过MWI的好处也是显而易见的,它最大的丰功伟绩就是把“观测者”这个碍手碍脚的东西从物理中一脚踢开。现在整个宇宙只是严格地按照波函数演化,不必再低声下气地去求助于“观测者”,或者“智能生物”的选择了。物理学家现在也不必再为那个奇迹般的“坍缩”大伤脑筋,无奈地在漂亮的理论框架上贴上丑陋的补丁,用以解释R过程的机理。我们可怜的薛定谔猫也终于摆脱了那又死又活的煎熬,而改为自得其乐地生活(一死一活)在两个不同的世界中。
重要的是,大自然又可以自己做主了,它不必在“观测者”的阴影下战战兢兢地苟延残喘,直到某个拥有“意识”的主人赏了一次“观测”才得以变成现实,不然就只好在概率波叠加中埋没一生。在MWI里,宇宙本身重新成为唯一的主宰,任何观测者都是它的一部分,随着它的演化被分裂、投影到各种世界中去。宇宙的分裂只取决于环境的引入和不可逆的放大过程,这样一幅客观的景象还是符合大部分科学家的传统口味的,至少不会像哥本哈根派那样让人抓狂,以致寝食难安。
MWI的一个副产品是,它重新回到了经典理论的决定论中去。因为就薛定谔方程本身来说,它是决定性的,也就是说,给定了某个时刻t的状态,我们就可以从正反两个方向推演,得出系统在任意时刻的状态。从这个意义上来说,时间的“流逝”不过是种错觉!另外,既然不存在“坍缩”或者R过程,只有确定的U过程,“随机性”便不再因人而异地胡搅蛮缠。从这个意义上说,上帝又不掷骰子了,他老人家站在一个高高在上的角度,鸟瞰整个宇宙的波函数,则一切仍然尽在把握:宇宙整体上还是严格地按照确定的薛定谔方程演化。电子也不必投掷骰子,做出随机的选择来穿过一条缝:它同时在两个世界中各穿过了一条缝而已。只不过,对于我们这些凡夫俗子,芸芸众生来说,因为我们纠缠在红尘之中,与生俱来的限制迷乱了我们的眼睛,让我们只看得见某一个世界的影子。而在这个投影中,现实是随机的,跳跃的,让人惊奇的。
(* 这里顺便澄清一下词语方面的问题,对于MWI,一般人们喜欢把多个分支称为“世界”(World),把它们的总和称为“宇宙”(Universe),这样一来宇宙只有一个,它按照薛定谔方程发展,而“世界”有许多,随着时间不停地分裂。但也有人喜欢把各个分支都称为“宇宙”,把它们的总和称为“多宙”(Multiverse),比如著名的多宇宙派物理学家David Deutsch。这只是一个叫法的问题,多世界还是多宇宙,它们指的是一个意思。)
然而,虽然MWI也算可以自圆其说,但无论如何,现实中存在着许多个宇宙,这在一般人听起来也实在太古怪了。哪怕是出于哲学上的雅致理由(特别是奥卡姆剃刀),人们也觉得应当对MWI采取小心的态度:这种为了小小电子动辄把整个宇宙拉下水的做法不大值得欣赏。但在宇宙学家中,MWI却是很流行和广受欢迎的观点。特别是它不要求“观测者”的特殊地位,而把宇宙的历史和进化归结到它本身上去,这使得饱受哥本哈根解释,还有参予性模型诅咒之苦的宇宙学家们感到异常窝心。大致来说,搞量子引力(比如超弦)和搞宇宙论等专业的物理学家比较青睐MWI,而如果把范围扩大到一般的“科学家”中去,则认为其怪异不可接受的比例就大大增加。在多世界的支持者中,有我们熟悉的费因曼、温伯格、霍金,有人把夸克模型的建立者,1969年诺贝尔物理奖得主盖尔曼(Murray GellMann)也计入其中,不过作为量子论“一致历史”(consistent history)解释的创建人之一,我们还是把他留到史话相应的章节中去讲,虽然这种解释实际上可以看作MWI的加强版。
对MWI表示直接反对的,著名的有贝尔、斯特恩(Stein)、肯特(Kent)、彭罗斯等。其中有些人比如彭罗斯也是搞引力的,可以算是非常独特了。
但是,对于我们史话的读者们来说,也许大家并不用理会宇宙学家或者其他科学家的哲学口味有何不同,重要的是,现在我们手上有一个哥本哈根解释,有一个多宇宙解释,我们如何才能知道,究竟应该相信哪一个呢?各人在生活中的审美观点不同是很正常的,比如你喜欢贝多芬而我喜欢莫扎特,你中意李白我沉迷杜甫,都没有什么好大惊小怪,但科学,尤其是自然科学就不同了。科学之所以伟大,不正是因为它可以不受到主观意志的影响,成为宇
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!