ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡
¶ÁÊéÊÒ ·µ»Ø±¾ÊéĿ¼ ¼ÓÈëÊéÇ© ÎÒµÄÊé¼Ü ÎÒµÄÊéÇ© TXTÈ«±¾ÏÂÔØ ¡ºÊղص½ÎÒµÄä¯ÀÀÆ÷¡»

a history of science-1-µÚ10²¿·Ö

¿ì½Ý²Ù×÷: °´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³ °´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ °´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿! Èç¹û±¾ÊéûÓÐÔĶÁÍ꣬ÏëÏ´μÌÐø½Ó×ÅÔĶÁ£¬¿ÉʹÓÃÉÏ·½ "Êղص½ÎÒµÄä¯ÀÀÆ÷" ¹¦ÄÜ ºÍ "¼ÓÈëÊéÇ©" ¹¦ÄÜ£¡

lead¡¡to¡¡all¡¡the¡¡members£»¡¡whether¡¡the¡¡doctor¡¡lays¡¡his¡¡finger¡¡on¡¡the¡¡forehead£»¡¡on¡¡the¡¡back¡¡of¡¡the¡¡head£»¡¡on¡¡the¡¡hands£»¡¡on¡¡the¡¡place¡¡of¡¡the¡¡stomach¡¡£¨£¿£©£»¡¡on¡¡the¡¡arms£»¡¡or¡¡on¡¡the¡¡feet£»¡¡everywhere¡¡he¡¡meets¡¡with¡¡the¡¡heart£»¡¡because¡¡its¡¡vessels¡¡lead¡¡to¡¡all¡¡the¡¡members¡£¡¨£§9£§¡¡This¡¡recognition¡¡of¡¡the¡¡pulse¡¡must¡¡be¡¡credited¡¡to¡¡the¡¡Egyptian¡¡physician¡¡as¡¡a¡¡piece¡¡of¡¡practical¡¡knowledge£»¡¡in¡¡some¡¡measure¡¡off¡­setting¡¡the¡¡vagueness¡¡of¡¡his¡¡anatomical¡¡theories¡£

ABSTRACT¡¡SCIENCE¡¡But£»¡¡indeed£»¡¡practical¡¡knowledge¡¡was£»¡¡as¡¡has¡¡been¡¡said¡¡over¡¡and¡¡over£»¡¡the¡¡essential¡¡characteristic¡¡of¡¡Egyptian¡¡science¡£¡¡Yet¡¡another¡¡illustration¡¡of¡¡this¡¡is¡¡furnished¡¡us¡¡if¡¡we¡¡turn¡¡to¡¡the¡¡more¡¡abstract¡¡departments¡¡of¡¡thought¡¡and¡¡inquire¡¡what¡¡were¡¡the¡¡Egyptian¡¡attempts¡¡in¡¡such¡¡a¡¡field¡¡as¡¡mathematics¡£¡¡The¡¡answer¡¡does¡¡not¡¡tend¡¡greatly¡¡to¡¡increase¡¡our¡¡admiration¡¡for¡¡the¡¡Egyptian¡¡mind¡£¡¡We¡¡are¡¡led¡¡to¡¡see£»¡¡indeed£»¡¡that¡¡the¡¡Egyptian¡¡merchant¡¡was¡¡able¡¡to¡¡perform¡¡all¡¡the¡¡computations¡¡necessary¡¡to¡¡his¡¡craft£»¡¡but¡¡we¡¡are¡¡forced¡¡to¡¡conclude¡¡that¡¡the¡¡knowledge¡¡of¡¡numbers¡¡scarcely¡¡extended¡¡beyond¡¡this£»¡¡and¡¡that¡¡even¡¡here¡¡the¡¡methods¡¡of¡¡reckoning¡¡were¡¡tedious¡¡and¡¡cumbersome¡£¡¡Our¡¡knowledge¡¡of¡¡the¡¡subject¡¡rests¡¡largely¡¡upon¡¡the¡¡so¡­¡¡called¡¡papyrus¡¡Rhind£»£§10£§¡¡which¡¡is¡¡a¡¡sort¡¡of¡¡mythological¡¡hand¡­book¡¡of¡¡the¡¡ancient¡¡Egyptians¡£¡¡Analyzing¡¡this¡¡document£»¡¡Professor¡¡Erman¡¡concludes¡¡that¡¡the¡¡knowledge¡¡of¡¡the¡¡Egyptians¡¡was¡¡adequate¡¡to¡¡all¡¡practical¡¡requirements¡£¡¡Their¡¡mathematics¡¡taught¡¡them¡¡¡¨how¡¡in¡¡the¡¡exchange¡¡of¡¡bread¡¡for¡¡beer¡¡the¡¡respective¡¡value¡¡was¡¡to¡¡be¡¡determined¡¡when¡¡converted¡¡into¡¡a¡¡quantity¡¡of¡¡corn£»¡¡how¡¡to¡¡reckon¡¡the¡¡size¡¡of¡¡a¡¡field£»¡¡how¡¡to¡¡determine¡¡how¡¡a¡¡given¡¡quantity¡¡of¡¡corn¡¡would¡¡go¡¡into¡¡a¡¡granary¡¡of¡¡a¡¡certain¡¡size£»¡¨¡¡and¡¡like¡¡every¡­day¡¡problems¡£¡¡Yet¡¡they¡¡were¡¡obliged¡¡to¡¡make¡¡some¡¡of¡¡their¡¡simple¡¡computations¡¡in¡¡a¡¡very¡¡roundabout¡¡way¡£¡¡It¡¡would¡¡appear£»¡¡for¡¡example£»¡¡that¡¡their¡¡mental¡¡arithmetic¡¡did¡¡not¡¡enable¡¡them¡¡to¡¡multiply¡¡by¡¡a¡¡number¡¡larger¡¡than¡¡two£»¡¡and¡¡that¡¡they¡¡did¡¡not¡¡reach¡¡a¡¡clear¡¡conception¡¡of¡¡complex¡¡fractional¡¡numbers¡£¡¡They¡¡did£»¡¡indeed£»¡¡recognize¡¡that¡¡each¡¡part¡¡of¡¡an¡¡object¡¡divided¡¡into¡¡10¡¡pieces¡¡became¡¡1/10¡¡of¡¡that¡¡object£»¡¡they¡¡even¡¡grasped¡¡the¡¡idea¡¡of¡¡2/3¡¡this¡¡being¡¡a¡¡conception¡¡easily¡¡visualized£»¡¡but¡¡they¡¡apparently¡¡did¡¡not¡¡visualize¡¡such¡¡a¡¡conception¡¡as¡¡3/10¡¡except¡¡in¡¡the¡¡crude¡¡form¡¡of¡¡1/10¡¡plus¡¡1/10¡¡plus¡¡1/10¡£¡¡Their¡¡entire¡¡idea¡¡of¡¡division¡¡seems¡¡defective¡£¡¡They¡¡viewed¡¡the¡¡subject¡¡from¡¡the¡¡more¡¡elementary¡¡stand¡­point¡¡of¡¡multiplication¡£¡¡Thus£»¡¡in¡¡order¡¡to¡¡find¡¡out¡¡how¡¡many¡¡times¡¡7¡¡is¡¡contained¡¡in¡¡77£»¡¡an¡¡existing¡¡example¡¡shows¡¡that¡¡the¡¡numbers¡¡representing¡¡1¡¡times¡¡7£»¡¡2¡¡times¡¡7£»¡¡4¡¡times¡¡7£»¡¡8¡¡times¡¡7¡¡were¡¡set¡¡down¡¡successively¡¡and¡¡various¡¡experimental¡¡additions¡¡made¡¡to¡¡find¡¡out¡¡which¡¡sets¡¡of¡¡these¡¡numbers¡¡aggregated¡¡77¡£¡¡¡¡¡¡1¡¡7¡¡¡¡¡¡2¡¡14¡¡¡¡¡¡4¡¡28¡¡¡¡¡¡8¡¡56¡¡A¡¡line¡¡before¡¡the¡¡first£»¡¡second£»¡¡and¡¡fourth¡¡of¡¡these¡¡numbers¡¡indicated¡¡that¡¡it¡¡is¡¡necessary¡¡to¡¡multiply¡¡7¡¡by¡¡1¡¡plus¡¡2¡¡plus¡¡8that¡¡is£»¡¡by¡¡11£»¡¡in¡¡order¡¡to¡¡obtain¡¡77£»¡¡that¡¡is¡¡to¡¡say£»¡¡7¡¡goes¡¡11¡¡times¡¡in¡¡77¡£¡¡All¡¡this¡¡seems¡¡very¡¡cumbersome¡¡indeed£»¡¡yet¡¡we¡¡must¡¡not¡¡overlook¡¡the¡¡fact¡¡that¡¡the¡¡process¡¡which¡¡goes¡¡on¡¡in¡¡our¡¡own¡¡minds¡¡in¡¡performing¡¡such¡¡a¡¡problem¡¡as¡¡this¡¡is¡¡precisely¡¡similar£»¡¡except¡¡that¡¡we¡¡have¡¡learned¡¡to¡¡slur¡¡over¡¡certain¡¡of¡¡the¡¡intermediate¡¡steps¡¡with¡¡the¡¡aid¡¡of¡¡a¡¡memorized¡¡multiplication¡¡table¡£¡¡In¡¡the¡¡last¡¡analysis£»¡¡division¡¡is¡¡only¡¡the¡¡obverse¡¡side¡¡of¡¡multiplication£»¡¡and¡¡any¡¡one¡¡who¡¡has¡¡not¡¡learned¡¡his¡¡multiplication¡¡table¡¡is¡¡reduced¡¡to¡¡some¡¡such¡¡expedient¡¡as¡¡that¡¡of¡¡the¡¡Egyptian¡£¡¡Indeed£»¡¡whenever¡¡we¡¡pass¡¡beyond¡¡the¡¡range¡¡of¡¡our¡¡memorized¡¡multiplication¡¡table¡­which¡¡for¡¡most¡¡of¡¡us¡¡ends¡¡with¡¡the¡¡twelvesthe¡¡experimental¡¡character¡¡of¡¡the¡¡trial¡¡multiplication¡¡through¡¡which¡¡division¡¡is¡¡finally¡¡effected¡¡does¡¡not¡¡so¡¡greatly¡¡differ¡¡from¡¡the¡¡experimental¡¡efforts¡¡which¡¡the¡¡Egyptian¡¡was¡¡obliged¡¡to¡¡apply¡¡to¡¡smaller¡¡numbers¡£¡¡Despite¡¡his¡¡defective¡¡comprehension¡¡of¡¡fractions£»¡¡the¡¡Egyptian¡¡was¡¡able¡¡to¡¡work¡¡out¡¡problems¡¡of¡¡relative¡¡complexity£»¡¡for¡¡example£»¡¡he¡¡could¡¡determine¡¡the¡¡answer¡¡of¡¡such¡¡a¡¡problem¡¡as¡¡this£º¡¡a¡¡number¡¡together¡¡with¡¡its¡¡fifth¡¡part¡¡makes¡¡21£»¡¡what¡¡is¡¡the¡¡number£¿¡¡The¡¡process¡¡by¡¡which¡¡the¡¡Egyptian¡¡solved¡¡this¡¡problem¡¡seems¡¡very¡¡cumbersome¡¡to¡¡any¡¡one¡¡for¡¡whom¡¡a¡¡rudimentary¡¡knowledge¡¡of¡¡algebra¡¡makes¡¡it¡¡simple£»¡¡yet¡¡the¡¡method¡¡which¡¡we¡¡employ¡¡differs¡¡only¡¡in¡¡that¡¡we¡¡are¡¡enabled£»¡¡thanks¡¡to¡¡our¡¡hypothetical¡¡x£»¡¡to¡¡make¡¡a¡¡short¡¡cut£»¡¡and¡¡the¡¡essential¡¡fact¡¡must¡¡not¡¡be¡¡overlooked¡¡that¡¡the¡¡Egyptian¡¡reached¡¡a¡¡correct¡¡solution¡¡of¡¡the¡¡problem¡£¡¡With¡¡all¡¡due¡¡desire¡¡to¡¡give¡¡credit£»¡¡however£»¡¡the¡¡fact¡¡remains¡¡that¡¡the¡¡Egyptian¡¡was¡¡but¡¡a¡¡crude¡¡mathematician¡£¡¡Here£»¡¡as¡¡elsewhere£»¡¡it¡¡is¡¡impossible¡¡to¡¡admire¡¡him¡¡for¡¡any¡¡high¡¡development¡¡of¡¡theoretical¡¡science¡£¡¡First£»¡¡last£»¡¡and¡¡all¡¡the¡¡time£»¡¡he¡¡was¡¡practical£»¡¡and¡¡there¡¡is¡¡nothing¡¡to¡¡show¡¡that¡¡the¡¡thought¡¡of¡¡science¡¡for¡¡its¡¡own¡¡sake£»¡¡for¡¡the¡¡mere¡¡love¡¡of¡¡knowing£»¡¡ever¡¡entered¡¡his¡¡head¡£¡¡In¡¡general£»¡¡then£»¡¡we¡¡must¡¡admit¡¡that¡¡the¡¡Egyptian¡¡had¡¡not¡¡progressed¡¡far¡¡in¡¡the¡¡hard¡¡way¡¡of¡¡abstract¡¡thinking¡£¡¡He¡¡worshipped¡¡everything¡¡about¡¡him¡¡because¡¡he¡¡feared¡¡the¡¡result¡¡of¡¡failing¡¡to¡¡do¡¡so¡£¡¡He¡¡embalmed¡¡the¡¡dead¡¡lest¡¡the¡¡spirit¡¡of¡¡the¡¡neglected¡¡one¡¡might¡¡come¡¡to¡¡torment¡¡him¡£¡¡Eye¡­minded¡¡as¡¡he¡¡was£»¡¡he¡¡came¡¡to¡¡have¡¡an¡¡artistic¡¡sense£»¡¡to¡¡love¡¡decorative¡¡effects¡£¡¡But¡¡he¡¡let¡¡these¡¡always¡¡take¡¡precedence¡¡over¡¡his¡¡sense¡¡of¡¡truth£»¡¡as£»¡¡for¡¡example£»¡¡when¡¡he¡¡modified¡¡his¡¡lists¡¡of¡¡kings¡¡at¡¡Abydos¡¡to¡¡fit¡¡the¡¡space¡¡which¡¡the¡¡architect¡¡had¡¡left¡¡to¡¡be¡¡filled£»¡¡he¡¡had¡¡no¡¡historical¡¡sense¡¡to¡¡show¡¡to¡¡him¡¡that¡¡truth¡¡should¡¡take¡¡precedence¡¡over¡¡mere¡¡decoration¡£¡¡And¡¡everywhere¡¡he¡¡lived¡¡in¡¡the¡¡same¡¡happy¡­go¡­lucky¡¡way¡£¡¡He¡¡loved¡¡personal¡¡ease£»¡¡the¡¡pleasures¡¡of¡¡the¡¡table£»¡¡the¡¡luxuries¡¡of¡¡life£»¡¡games£»¡¡recreations£»¡¡festivals¡£¡¡He¡¡took¡¡no¡¡heed¡¡for¡¡the¡¡morrow£»¡¡except¡¡as¡¡the¡¡morrow¡¡might¡¡minister¡¡to¡¡his¡¡personal¡¡needs¡£¡¡Essentially¡¡a¡¡sensual¡¡being£»¡¡he¡¡scarcely¡¡conceived¡¡the¡¡meaning¡¡of¡¡the¡¡intellectual¡¡life¡¡in¡¡the¡¡modern¡¡sense¡¡of¡¡the¡¡term¡£¡¡He¡¡had¡¡perforce¡¡learned¡¡some¡¡things¡¡about¡¡astronomy£»¡¡because¡¡these¡¡were¡¡necessary¡¡to¡¡his¡¡worship¡¡of¡¡the¡¡gods£»¡¡about¡¡practical¡¡medicine£»¡¡because¡¡this¡¡ministered¡¡to¡¡his¡¡material¡¡needs£»¡¡about¡¡practical¡¡arithmetic£»¡¡because¡¡this¡¡aided¡¡him¡¡in¡¡every¡­day¡¡affairs¡£¡¡The¡¡bare¡¡rudiments¡¡of¡¡an¡¡historical¡¡science¡¡may¡¡be¡¡said¡¡to¡¡be¡¡crudely¡¡outlined¡¡in¡¡his¡¡defective¡¡lists¡¡of¡¡kings¡£¡¡But¡¡beyond¡¡this¡¡he¡¡did¡¡not¡¡go¡£¡¡Science¡¡as¡¡science£»¡¡and¡¡for¡¡its¡¡own¡¡sake£»¡¡was¡¡unknown¡¡to¡¡him¡£¡¡He¡¡had¡¡gods¡¡for¡¡all¡¡material¡¡functions£»¡¡and¡¡festivals¡¡in¡¡honor¡¡of¡¡every¡¡god£»¡¡but¡¡there¡¡was¡¡no¡¡goddess¡¡of¡¡mere¡¡wisdom¡¡in¡¡his¡¡pantheon¡£¡¡The¡¡conception¡¡of¡¡Minerva¡¡was¡¡reserved¡¡for¡¡the¡¡creative¡¡genius¡¡of¡¡another¡¡people¡£

III¡£¡¡SCIENCE¡¡OF¡¡BABYLONIA¡¡AND¡¡ASSYRIA¡¡Throughout¡¡classical¡¡antiquity¡¡Egyptian¡¡science¡¡was¡¡famous¡£¡¡We¡¡know¡¡that¡¡Plato¡¡spent¡¡some¡¡years¡¡in¡¡Egypt¡¡in¡¡the¡¡hope¡¡of¡¡penetrating¡¡the¡¡alleged¡¡mysteries¡¡of¡¡its¡¡fabled¡¡learning£»¡¡and¡¡the¡¡story¡¡of¡¡the¡¡Egyptian¡¡priest¡¡who¡¡patronizingly¡¡assured¡¡Solon¡¡that¡¡the¡¡Greeks¡¡were¡¡but¡¡babes¡¡was¡¡quoted¡¡everywhere¡¡without¡¡disapproval¡£¡¡Even¡¡so¡¡late¡¡as¡¡the¡¡time¡¡of¡¡Augustus£»¡¡we¡¡find¡¡Diodorus£»¡¡the¡¡Sicilian£»¡¡looking¡¡back¡¡with¡¡veneration¡¡upon¡¡the¡¡Oriental¡¡learning£»¡¡to¡¡which¡¡Pliny¡¡also¡¡refers¡¡with¡¡unbounded¡¡respect¡£¡¡From¡¡what¡¡we¡¡have¡¡seen¡¡of¡¡Egyptian¡¡science£»¡¡all¡¡this¡¡furnishes¡¡us¡¡with¡¡a¡¡somewhat¡¡striking¡¡commentary¡¡upon¡¡the¡¡attainments¡¡of¡¡the¡¡Greeks¡¡and¡¡Romans¡¡themselves¡£¡¡To¡¡refer¡¡at¡¡length¡¡to¡¡this¡¡would¡¡be¡¡to¡¡anticipate¡¡our¡¡purpose£»¡¡what¡¡now¡¡concerns¡¡us¡¡is¡¡to¡¡recall¡¡that¡¡all¡¡along¡¡there¡¡was¡¡another¡¡nation£»¡¡or¡¡group¡¡of¡¡nations£»¡¡that¡¡disputed¡¡the¡¡palm¡¡for¡¡scientific¡¡attainments¡£¡¡This¡¡group¡¡of¡¡nations¡¡found¡¡a¡¡home¡¡in¡¡the¡¡valley¡¡of¡¡the¡¡Tigris¡¡and¡¡Euphrates¡£¡¡Their¡¡land¡¡was¡¡named¡¡Mesopotamia¡¡by¡¡the¡¡Greeks£»¡¡because¡¡a¡¡large¡¡part¡¡of¡¡it¡¡lay¡¡between¡¡the¡¡two¡¡rivers¡¡just¡¡mentioned¡£¡¡The¡¡peoples¡¡themselves¡¡are¡¡familiar¡¡to¡¡every¡¡one¡¡as¡¡the¡¡Babylonians¡¡and¡¡the¡¡Assyrians¡£¡¡These¡¡peoples¡¡were¡¡of¡¡Semitic¡¡stockallied£»¡¡therefore£»¡¡to¡¡the¡¡ancient¡¡Hebrews¡¡and¡¡Phoenicians¡¡and¡¡of¡¡the¡¡same¡¡racial¡¡stem¡¡with¡¡the¡¡Arameans¡¡and¡¡Arabs¡£¡¡The¡¡great¡¡capital¡¡of¡¡the¡¡Babylonians¡¡during¡¡the¡¡later¡¡period¡¡of¡¡their¡¡history¡¡was¡¡the¡¡famed¡¡city¡¡of¡¡Babylon¡¡itself£»¡¡the¡¡most¡¡famous¡¡capital¡¡of¡¡the¡¡Assyrians¡¡was¡¡Nineveh£»¡¡that¡¡city¡¡to¡¡which£»¡¡as¡¡every¡¡Bible¡­¡¡student¡¡will¡¡recall£»¡¡the¡¡prophet¡¡Jonah¡¡was¡¡journeying¡¡when¡¡he¡¡had¡¡a¡¡much¡­exploited¡¡experience£»¡¡the¡¡record¡¡of¡¡which¡¡forms¡¡no¡¡part¡¡of¡¡scientific¡¡annals¡£¡¡It¡¡was¡¡the¡¡kings¡¡of¡¡Assyria£»¡¡issuing¡¡from¡¡their¡¡palaces¡¡in¡¡Nineveh£»¡¡who¡¡dominated¡¡the¡¡civilization¡¡of¡¡Western¡¡Asia¡¡during¡¡the¡¡heyday¡¡of¡¡Hebrew¡¡history£»¡¡and¡¡whose¡¡deeds¡¡are¡¡so¡¡frequently¡¡mentioned¡¡in¡¡the¡¡Hebrew¡¡chronicles¡£¡¡Later¡¡on£»¡¡in¡¡the¡¡year¡¡606¡¡B¡£C¡££»¡¡Nineveh¡¡was¡¡overthrown¡¡by¡¡the¡¡Medes£§1£§¡¡and¡¡Babylonians¡£¡¡The¡¡famous¡¡city¡¡was¡¡completely¡¡destroyed£»¡¡never¡¡to¡¡be¡¡rebuilt¡£¡¡Babylon£»¡¡however£»¡¡though¡¡conquered¡¡subsequently¡¡by¡¡Cyrus¡¡and¡¡held¡¡in¡¡subjection¡¡by¡¡Darius£»£§2£§¡¡the¡¡Persian¡¡kings£»¡¡continued¡¡to¡¡hold¡¡sway¡¡as¡¡a¡¡great¡¡world¡­capital¡¡for¡¡some¡¡centuries¡£¡¡The¡¡last¡¡great¡¡historical¡¡event¡¡that¡¡occurred¡¡within¡¡its¡¡walls¡¡was¡¡the¡¡death¡¡of¡¡Alexander¡¡the¡¡Great£»¡¡which¡¡took¡¡place¡¡there¡¡in¡¡the¡¡year¡¡322¡¡B¡£C¡£¡¡In¡¡the¡¡time¡¡of¡¡Herodotus¡¡the¡¡fame¡¡of¡¡Babylon¡¡was¡¡at¡¡its¡¡height£»¡¡and¡¡the¡¡father¡¡of¡¡history¡¡has¡¡left¡¡us¡¡a¡¡most¡¡entertaining¡¡account¡¡of¡¡what¡¡he¡¡saw¡¡when¡¡he¡¡visited¡¡the¡¡wonderful¡¡capital¡£¡¡Unfortunately£»¡¡Herodotus¡¡was¡¡not¡¡a¡¡scholar¡¡in¡¡the¡¡proper¡¡acceptance¡¡of¡¡the¡¡term¡£¡¡He¡¡probably¡¡had¡¡no¡¡inkling¡¡of¡¡the¡¡Babylonian¡¡language£»¡¡so¡¡the¡¡voluminous¡¡records¡¡of¡¡its¡¡literature¡¡were¡¡entirely¡¡shut¡¡off¡¡from¡¡his¡¡observation¡£¡¡He¡¡therefore
·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©
¿ì½Ý²Ù×÷: °´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³ °´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ °´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿!
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾­Ñé½±Àø£¬ÈÏÕæдԭ´´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾­Ñé½±ÀøŶ£¡