友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
读书室 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

科学史及其与哲学和宗教的关系-第42部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!


  化学的分解与合成不过是把这些质点分开或联合。物质的新创或毁灭是不在化学作用的能力范围之内的。我们要想创造或毁灭一个氢的质点,和在太阳系里增加一颗新的、或毁灭一颗固有的行星,一样的不可能。我们所能做到的改变,只是把粘着状态下或化合状态下的质点分开,以及把原来分离的质点联合起来而已。 

  在一切化学研究里,人们都正确地认为,弄清化合物中简单成分的相对重量,是一个重要的目标。不过,不幸的是,过去化学的研究就停止在这里;人们本来很可以从物质的相对重量,推出物体的终极质点或原子的相对重量,由此看出,它们在各种其他化合物中的数目与重量,用来帮助和指导我们未来的研究和改正研究的结果。因此,本书的一个重大目标,就是说明测定下列几个量的重要性和好处:单体与化合物中终极质点的相对重量,组成一个复杂质点的简单基本质点的数目,参与构成一个较复杂质点的比较不复杂的质点的数目。 

  如果有A与B两个可以化合的物体,以下为从最简的化合开始的各种化合的可能次序,有: 

  A的1原子+B的1原子=C的1原子,二元的。 

  A的1原子+B的2原子=D的1原子,三元的。 

  A的2原子+B的1原子=E的1原子,三元的。 

  A的1原子+B的3原子=F的1原子,四元的。 

  A的3原子+B的1原子=G的1原子,四元的。 

  我们可以采取以下的通则,作为一切关于化学化合的研究的指针: 

  1.如果两物体化合时只得出一种化合物,我们必须假定这种化合是二元的,除非有某种造成相反情况的原因出现。 

  2.如果发现有两种化合物,则必须假定它们一个是二元的,一个是三元的。 

  3.如果有三种化合物,则可预料一个是二元的,其他两个是三元的……等等。 

  把这些规则应用到已经查明的化学事实上去,我们得到以下的结论:1.水是氢与氧的二元化合物,这两种元素的原子的相对重量约为1:7;2.氨是氢与氮的工元化合物,这两种元素的原子的相对重量约为1:5;3.氧化氮的气体是氮与氧的二元化合物,它们的原子重量为5与7;4.氧化碳是由一个碳原子与一个氧原子构成的二元化合物,共重约为12;碳酸气是三元化合物(有时也是二元的),它有一个碳原子和两个氧原子,共重为19;等等。以上各种情形,都是以氢元素的原子为单位来表达其他元素的重量。 

  道尔顿的叙述,自然包含着当时难免的错误:例如他将热看做是一种微妙的流体;他的化合重量也不精确,如以氢为单位时,氧的重量应该是8,而他定为7。他假定,如两种元素的化合物只有一种,便应看做是一个原子与另一个原子的结合。这种假定也不是普遍适用的,因此,他对于水和氨的结构才有错误的观念。虽然这样,道尔顿把模糊的假说变成了确定的科学理论,的确取得科学史上的重大进步之一。 

  道尔顿在小圆圈中加上点、星和十字等记号来代表元素的原子。这个方法后来为瑞典化学家柏采留斯(Berzelius,1779-1848年)加以改进,形成我们现今所用的体系,即用字母为符号去代表同一个元素的原子量相当的该元素的相对质量。例如H不是模糊地代表氢元素,而是代表等于1(1克、1磅或其他单位)的氢的质量;O代表等于同一单位的16倍的氧元素的质量。 

  柏采留斯的主要实验工作,是在当时可能范围内,用最大的精确度来测定原子量,或者说等价的化合曼。他也发现了几个新元素,研究过许多化合物,更在矿物学的研究上,揭开了一个新的篇章。他与戴维(Davy)联合确立了电化学的基本定律,并且看到电极性与化学余合力之间的密切关系。他把这观念推广得太远,而为当时所难了解:他认为一切原子都含有阳电或阴电由于其相对力量,它们才化合。他认为每一化合物都是带异性电的两部分所组成。如果几个化合物互相化合,我们可以设想那是由于多余的异性电荷的作用。这个二元论的理论不够应付日益增进的知识,到有机化学兴盛时,就为基型说所代替了。现在我们明白化学和电两种现象有密切的关系,不过不如柏采留斯所想象的那样简单。 

  当人们对气体化合现象加以更广泛的研究时,道尔顿原来的原子观念,便表现出有缺陷。盖伊-吕萨克(Gay-Lussac,1778-1850年)表明气体化合时,其容积常有一定的简单比例,阿伏伽德罗伯爵(1776-1856年)在1813年指出:根据道尔顿的理论,和盖伊-吕萨克的观测,我们可以推断一切同容积的气体所含的原子数,必定彼此有简单的比例。安培于1814年独立得到相同的结论,但被人忘记或忽视了,到1858年,坎尼查罗(Cannizzaro)才再度澄清了这个问题。到那时,人们才从气体化合的事实以及从物理学的考虑看出,有必要把化学上的原子和物理学上的分子区别开来。化学上的原子是物质参加化合的最小部分;物理学上的分子,是能自由存在的最小质点。表达阿伏伽德罗假设的最简单方法,是假定同容积的气体含有同数的分子。以后我们还要说明这结果可用数学方法从物理学上的一个理论推导出来,这个理论假定气体的压力是由于它的分子常在不断地运动和碰撞而产生的。 

  但回到水的问题来,二容积(即二分子)的氢与一容积的氧化合,而得二容积(或二分子)的水汽。解释这些关系最简单的理论,是假定物理学上的氢分子与氧分子,每一分子都含两个化学原子,而水汽分子具有可以用H2O代表的化学结构,因而这变化可以下列方程式去表示: 

  2H2+O2=2H2O 

  (2容积)(1容积)(2容积) 

  这样,既然氧的化合量是8,而一个氧原子可以和两个氢原子化合,如果取氢的原子量为单位,则氧的原子量应是16而非8。所以在决定各元素的原子量以前,我们必须将道尔顿的化合量加以调整,使之合于后来实验所发现的事实。首先按照所有证据系统地进行了这番工作的就是坎尼查罗。 

  由于一个氧原子和两个氢原子化合,我们就说氧的原子价是2。原子价的观念,是以后许多年间大部分化学思想的基础。 

  已知的元素已经由道尔顿所认识的二十个增加到现在的九十多个。元素发现的工作,是夜间歇不定中进行的。当一个新的研究方法应用到化学问题的时候,就常常会发现一串新元素。电流的分解力使戴维爵士(1778-1829年)在1807年分离出碱金属的钾与纳。稍后光谱分析使我们发现铷、铯、铊、镓等物质。放射性的方法使我们发现了镭和它同族一类元素,阿斯顿的摄谱仪又使我们发现了许多同位的元素。 

  1815年,普劳特(Prout)就已经在研究元素的原子量与其物理性质之间的关系,随后纽兰兹(Newlands)与德·肖库土瓦(deChaucourtois)也研究了这个问题。1869年,迈耶尔(Lothar Meyer)与俄国化学家门得列耶夫(Mendeleeff,1834-1907年)成功地证实了这种关系。门得列耶夫把元素按其原子量的顺序,由轻到重排成一个表时,发现它们有一种周期性——象纽兰兹所指出过的那样,每第八个元素都有一些相同的性质,一切元素可以照这样排成一表,使同性质的元素归到一栏里去。利用这样制成的周期表,可以把正确的原子量给与原子价未定的元素,表中的空白由门得列耶夫根据假设加以填补,这样他就预言了一些未知元素的存在及其性质,其中一些后来竟被人发现了。 

  门得列耶夫认为他的周期表只是纯粹经验事实的叙述。但这样的关系却下可避免地使人回到物质有共同基础的老观念上去。许多人以为这个共同基础可能就是氢,他们想证明如以氢的原子量为单位,其他元素的原子量全都是整数。虽然许多元素的原子量接近整数,但有几个元素,例如氯(CI=35.45)顽固地不遵从这个方案,斯塔斯(Stas)等人增加测定原子量的精确度以后,也不能消除这个偏差。要证明物质具有共同基础并把原子量归结为整数,还得等候半个世纪;这种工作是当时的实验和理论能力办不到的。 

  电流 

  我们在上面叙述的各种类型的起电仪器,都主要是用来把静电荷赋予某种绝缘体的。的确,如果使起电机接地,形成一个导电通路,则在这电路中就有一点电流通过。不过,就是在最优良的摩擦起电机中,每一秒钟通过的电量也都非常之少,以致要想在这电路上发现电流,那是很困难的,虽然,如果在导线中留一个空气间隙,则这起电机所生的高电位差,可以产生可见的火花。 

  十九世纪初,伽伐尼或伏特电池的发明,开辟了一个新的研究领域。这种电池引起了一系列现象,最初,称为伽伐尼流,经过许多人的努力,慢慢地和另外一系列以电得名的现象联系起来。我们终于明白所谓伽伐尼流,正是电的流动,只是和起电机所生的电量比起来,大很多,但其电位差却比电机所生的电位差小得不计其数。由于在电路的任何一点上都不能发现积存的电,我们也不妨把电流比做一种不可压缩的流体在不可伸长的刚性管内的流动。 

  伏特电池是由于偶然的观察而发现的。这个发现,最初似乎要引到另外一个方向去。1786年左右,意大利人伽伐尼发现蛙腿在起电机的放电的影响下发生收缩。在这次观察之后,他又发现:如果使神经和肌肉同两种不相类似的金属连接起来,而使金属互相接触,也可以得到同样的收缩。伽伐尼把这些效果归因于所谓“动物电”;后来,另外一个意大利人帕维亚的伏特(Voita of Pavia)出来,证明这种基本现象并不依赖于一种动物物质的存在。1800年,伏特发明了以他的姓得名的电池。在十九世纪初年,这种电池成为一种研究的工具,在伏特和他的同时代的别国人手中,产生了一些很有趣味的结果。当时的科学杂志登满了奇异的新发现的消息。当时的人都用极大的热情去研究这些发现,其热烈的程度,不亚于一世纪以后,人们阐释气体中的放电与放射现象时,所表现出的那种热忱。 

  伏特所制的电池,是用一串锌盘、铜盘以及为水或盐水浸湿的纸张,按下列次序相叠而成的:锌,铜,纸,锌,如此类推……最后是一个铜盘。这样一种组合,其实就是一个原始的原电池组。每一对小盘为浸湿的纸隔开,而成一个电池,造成少许电位差。这些小电池的电位差加在一起,便成了电池组铜锌两端的相当大的总电位差(或不恰当地叫做电动力)。另一种装置法是把若干装有盐水或稀酸的杯子集合在一起,每个杯子装置一块锌片和一块铜片。前一杯子的锌片与次一杯子的铜片相联,这样一直继续下去,留下最先一个锌片和最后一个铜片,作为电池组的两极。伏特以为效果的来源在金属的联接处;因此圆盘和两极的金属片的次序才如以上所述。这些金属片或圆盘不久便发现是无用的,虽然它们在这种仪器的早期图画中占有重要地位。 

  如果我们从伏特的电池取用电流,其强度便迅速地衰减,主要由于铜片的表面上生了一层氢气膜。这种电极化,可用硫酸铜溶液围绕铜片来阻止,这样生成的物质是铜而非氢;或用碳棒代替铜片,把它放在氧化剂如硝酸或重铅酸钾的溶液中,这样所产生的氢气就立刻变为水。 

  化学效应 

  当伏特的发现的消息在1800年传到英国时,立刻就有人进行广一些基本观察,促成了电化学的诞生。尼科尔森(Nicholson)与卡莱尔(Carlisle)在把伏特电池的原来装置加以改变时发现:如果用两条黄铜丝连结电池的两极,再将两线的他端浸在水中,并使其互相接近,一端有氢气发生,另一端的黄铜线被氧化。如用白金丝或黄金丝来代替黄铜丝,则不发生氧化,氧以气体状态出现。他们注意到氢气的容积约为氧气的二倍,这正是氢氧二气化合成水的比例。他们说明这种现象就是水的分解。他们还注意到使用原来的装置时,电池内也有类似的化学反应。 

  不久,克鲁克香克(Cruichshank)分解了氯化镁、碳酸钠(苏打)和氨(阿摩尼亚)溶液,并且从银和铜的溶液中,将这些金属沉淀出来。这一结果以后导致电镀的方法。他又发现在阳极周围的液体变成碱性,而阴极周围的液体变成酸性。 

  1806年,戴维爵士(1778…1829年)
返回目录 上一页 下一页 回到顶部 0 1
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!