友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
读书室 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

中国古代科学家传记-第27部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!

个小三角形面积之和应是圆半周与半径之积,正如刘徽所说:“以一面乘
半径,觚而裁之,每辄自倍,故以半周乘半径而为圆幂。”即

S = lim 6 ·2n lr 

n。 ¥ 21 
nn = 
21 
Lr。

图6

刘徽原理——锥体体积公式的证明。刘徽极限思想最精彩的应用当推


他关于阳马与鳖■体积公式的证明。《九章算术》给出阳马体积公式Vy 

13 
,鳖■体积公式Vb =
16abh,其中, , 是宽、长、高。刘徽指h=abh ab 

指出在a≠b≠h 的情况下由于“鳖■殊形,阳马异体”,用基验法“则难
为之矣”。他只好另辟蹊径。刘徽首先提出一个重要原理:“邪解堑堵,
其一为阳马,一为鳖■。阳马居二,鳖■居一,不易之率也。”即对任一

堑堵,恒有V :V b = 2:1 。显然,只要证明了这个原理,由于堑堵体积为
21 

y 

abh,则阳马、鳖■的体积公式是不言而喻的。这个原理称为刘徽原理。刘
■ 

图7 刘徽原理之证明
徽用无穷小分割证明了它。他将一个阳马与一个鳖■拼成一个堑堵,再用
三个互相垂直的平面平分其长、宽、高,如图7。则阳马分解为一小长方
体,二小堑堵和二小阳马,鳖■分解为二小堑堵和二小鳖■。阳马中二小
堑堵与鳖■中二小堑堵拼成二小长方体,与阳马中小长方体共三个全等的
小长方体。显然,阳马与鳖■在其中体积之比为2:1。二小阳马与二小鳖

■恰是二小堑堵,它们又合成第四个全等的小长方体。阳马与鳖■在其中
体积之比仍未知。总之,阳马与鳖■在原堑堵的3/4 中的体积之比为2:1,
在其1/4 中仍未知,“是为别种而方者率居三,通其体而方者率居一”。
刘徽指出,若在余下的1/4 中能证明可知部分阳马与鳖■体积之比仍为2:
1,则就可以确定在整个堑堵中阳马与鳖■体积之比为2:1。为什么呢?
由于所余1/4 中,两个小堑堵的结构与原堑堵完全相似,因此可以重复刚
才的分割,从而又证明在其中的3/4 中阳马与鳖■体积之比为2:1,而
在原堑堵的
41 
· 
14 
中未被证明。这个过程可以无限继续下去,“半之弥

少,其余弥细,至细曰微,微则无形。由是言之,安取余哉?”没有证明
刘徽原理成立的部分为0。换言之,在整个堑堵中证明了刘徽原理。刘徽
原理是刘徽整个体积理论的核心。用无穷小分割方法解决四面体体积是现
代数学研究的课题之一,是D.希尔伯特(Hilbert)《数学问题》第三个问
题的主题。刘徽在此前1600 多年就开始考虑这个问题。

牟合方盖与截面积原理。在证明其他面积和体积时,刘徽以另一种方
式使用了无穷小分割。刘徽指出,《九章算术》的开立圆术是错误的。他
用两个底径等于球径的圆柱正交,其公共部分称作牟合方盖,如图8。提
出“合盖者,方率也;丸居其中,即圆率也”,指出了彻底解决球体积的
正确途径。200 多年后,祖冲之父子解决了这个问题。刘徽还提出圆锥、
圆台分别与其外切方锥、方台体积之比为π:4,圆锥与以圆锥底周为底之
每边长的方锥体积之比为25:314(相当于1:4π)。刘徽说“上连无成不
方,故方锥与阳马同实”。成,训层,如图9。可见刘徽认为,两立体若
等高处的截面积成定■

图8 球、牟合方盖与立方(八分之一)图9
比,则其体积成定比。后来西方的B.卡瓦列里(Cavalieri)的不可分量原
理与之十分接近。刘徽开始把中国对截面积原理的认识提高到理性阶段,
为祖■原理的最后完成作了准备。刘徽还提出圆锥与方锥的侧面积之比为
π:4。


极限思想在近似计算中的应用。刘徽指出,圆面积公式中的周径“谓
至然之数,非周三径一之率也”,因而需要求该数即π的精确值。他用割

584

圆程序割直径为尺的圆,依次求出l ,l ,l ,l ,算出S = 313 
625 

2 1234 4 

2 64 2 1692

寸,S5 = 314 
625 
寸,则S4 + 2 S5 …S4) = 314 
625 
S

( 寸> ,从而取

S=314 寸2,再利用圆面积公式反求出周长:“以半径一尺除圆幂,倍所得,
六尺二寸八分,即周数。”又“令径二尺与周六尺二寸八分相约,周得一
百五十七,径得五十,则其相与之率也”。此即π=157/50(=3。14)。

4 

2

刘徽认为此率“犹为微少”,又取S = 314 
25 
寸,同样求出π= 3927 / 

1250,并求出l8 ,计算出S9 ,验证了这个值。这是中国第一次担出求圆

周率的正确方法,奠定了中国古代圆周率计算在世界上长期领先的基础。
据信,祖冲之就是用刘徽的方法将圆周率的有效数字推进到8 位。刘徽指
出《九章算术》弧田(弓形)术不精确。他利用割圆思想,将弧二等分,求
出小弧之弦、矢,再将小弧二等分,如此继续下去,“割之又割,使至极
细。但举弦矢相乘之数,则必近密率矣”。用这种方法可以将弧田面积精
确到所需要的程度。《九章算术》开方不尽时,“以面命之”,这是以被
开方数的方根定义一个数,相当于无理数。至于其近似值,刘徽之前,

有表示成


N = a + 
2ar 
+ 1 
的,为根的整数部分,为余数。刘徽认为这
ar 

“虽粗相近,不可用也”。从而提出:“不以面命之,加定法如前,求其
微数。微数无名者以为分子,其一退以十为母,其再退以百为母。退之弥
下,其分弥细,则朱幂虽有所弃之数,不足言之也。”在开立方中也有类
似方法。这种求十进分数的思想与现今求无理根的十进小数近似值完全相
同,其意义十分重大。计算精确的圆周率,必须求微数,它是保证中国圆
周率计算长期领先的先决条件。同时,它开十进小数之先河,对中国在世
界上最先使用小数起了促进作用。

枝条虽分而同本干——刘徽的数学体系刘徽的数学知识分散在《九
章算术》中,好像杂乱无章,前后失次,实际上并不然。他说:“事类相
推,各有攸归,故枝条虽分而同本干知,发其一端而已。”这个端是什么
呢?刘徽在谈到数学研究并不特别困难时说:“至于以法相传,亦犹规矩
度量可得而共。”规、矩分别是画圆、画方的工具,表示事物的空间形式,
度量指度、量、衡,表示事物的数量关系。刘徽的话表明他认为数学方法
来源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何
与算术、代数的统一。对《九章算术》的解法进行论证是刘徽注的主题。
上文所列出的论证所使用的推理都是演绎推理,因而其论证是演绎证明。
事实上,整个刘徽注固然使用了大量类比与归纳推理,但在数学命题的论
证上主要使用了演绎推理。据分析,刘徽注中包含了三段论、关系推理、
连锁推理、假言推理、选言推理以及二难推理等演绎推理形式。刘徽推理
的前提是由公认的事实抽象出来的原理及已经证明的公式、解法。当然,
还必须提出许多数学定义。在中国,数学定义最初出现在先秦《墨经》中。
《九章算术》却没有任何定义。刘徽继承墨家传统,提出了若干定义,如
方程。“方”的本义是并船,许慎《说文解字》:“方,并船也”,亦训


并。“程,课程也”,考核其标准。方程的本意是并而程之。细言之,是
将一组物的各种数量关系并列起来考察诸物的标准。刘徽说:“群物总杂,
各列有数,总言其实。令每行为率,二物者再程,三物者三程,皆如物数
程之,并列为行,故谓之方程。”显然是一个符合方程本义的发生性定义。
刘徽关于正负数的定义:“两算得失相反,要令正负以名之。”它表明,
正负是互相依存的,不再是以盈为正,以欠为负的朴素描述。根据这个定
义,方程中各行系数的正负可根据消元的方便而定:“可得使头位常相与
异名。”面积的定义:“凡广从相乘谓之幂。”由这个定义,可以计算曲
面的面积,并且可以把与面积无关的两数相乘问题化成面积问题解决。刘
徽没写出体积的定义,但遍察《九章算术》,刘徽没写注的只有53 问的术
文,其中52 问(分别在卷二、三、八)或已注过总术,或已注过同类术,根
据简约的原则,不必再注。余下没作注的便只有商功章方堡■(方柱体)体
积公式。这不是刘徽的疏漏,而是把它看成不能证明的真理,因此可以理
解为定义。刘徽着力探讨《九章算术》各公式、解法,以至数学各部分之
间的关系。以体积问题为例。《九章算术》以■验法为主要方法,其正确
性是归纳的结果。刘徽则不然,他在用无穷小分割完成阳马与鳖■的体积
公式证明之后指出:“不有鳖■,无以审阳马之数,不有阳马,无以知

锥亭之类,功实之主也。”并且接近提出任何四面体的体积都是
61 
abh。

他将方锥、方亭、刍甍、刍童、羡除等多面体分割成长方体、堑堵、阳马、
鳖■,以证明其体积公式。刘徽的多面体理论是从长方体出发,以四面体
体积公式的证明为核心,以演绎推理为主的理论体系。刘徽的其他理论都
可作类似分析。总之,数学在刘徽的头脑中形成了一个独具特色的体系。
它从规矩度量的统一出发,引出面积、体积、率、正负数的定义,运用齐
同原理、出入相补原理、无穷小分割方法,以演绎逻辑为主要推理方法,
以计算为中心,以率为纲纪。它“约而能周,通而不黩”,并且没有任何
循环推理,全面地反映了到公元3 世纪为止的中国人的数学知识。刘徽《九
章算术注》不仅有概念,有命题,而且有联结这些概念和命题的逻辑推理。
它的出现标志着中国古代数学形成了自己的理论体系。

刘徽和他的时代公元3 世纪由刘徽完成《九章算术注》这样杰出的著
作不是偶然的。中国封建社会经过两汉大发展,到魏晋发生了大变革,经
济关系的基本特征是庄园农奴制,门阀士族占据政治舞台的中心,中国封
建社会进入一个新阶段。与此相适应,繁琐的两汉经学和谶纬迷信被冷落,
儒学衰微,代之而起的是以研究三玄(《周易》、《老子》、《庄子》)为
中心的辩难之风,思想界出现了春秋战国百家争鸣之后所未有过的解放与
活跃局面。知识分子较能按自己的特长和社会需要发挥才智,而少受追求
功名利禄及代圣贤立言的精神枷锁的束缚,从而打开了数学研究中发挥创
造性的大门。以严谨为其特点的数学几百年来积累了大量公式、解法需要
证明其正确性,而“析理”,探索思维规律,互相辩难,追求理性的辩难
之风的兴起促进了这个过程的完成。刘徽注《九章算术》的宗旨“析理以
辞,解体用图”无疑是辩难之风中“析理”在数学中的反映。刘徽主张“要
约”,“举一反三”,反对以多为贵、远引繁言,主张触类而长,这都与
嵇康、王弼、何晏等思想家的主张一致,甚至他们的许多用语、句法也都
相近。因此,刘徽深受辩难之风的影响而析数学之理是顺理成章的。我们


由此而断定刘徽为嵇康、王弼的同代人而稍小一点,当生于3 世纪20 年代
后期或稍后,注《九章算术》时年仅30 岁左右,这与汉末三国多早熟夙悟
才子是吻合的。

刘徽成长在齐鲁地区为他在数学理论上做出贡献提供了良好的客观条
件。邹鲁之乡是儒学的发祥地,临淄稷下学宫招徕全国著名学者,成为先
秦百家争鸣的中心之一。经两汉到魏晋,齐鲁的学术空气一直十分浓厚,2—3 世纪更出现了徐干、仲长统、王肃、郑玄、王弼等大思想家,曹魏时
期,齐鲁地区又是正始之音辩难之风的中心之一。因此,刘徽从小能受到
良好的文化教养,并置身于辩难之风之中。另一方面,2—3 世纪,齐鲁地
区的数学比较发达,出现了刘洪、郑玄、徐岳、王粲等著名数学家,形成
了以研究《九章算术》为主的数学中心,这就给刘徽少年时师承贤哲,成
年后“采其所见”,从事深入的数学研究准备了丰富的资料。在这样的客
观条件下,使刘徽有可能改变数学偏重实践经验,忽视理论研究的传统,
向重视理论研究的方向转化。

刘徽本人具有一个大科学家的素养,是他成功的内在因素。首先,他
继承了《九章算术》开创的数学联系实际的传统。刘徽在论述包括数学本
原在内的各种问题时都坚持实事求是,没有神秘的成分。他说:“不有
返回目录 上一页 下一页 回到顶部 2 2
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!